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Main classes of volatility models

Prices are often modeled as continuous semi-martingales of the
form

dPt = Pt(µtdt + σtdWt).

The volatility process σs is the most important ingredient of the
model. The three most classical classes of volatility models are :

Deterministic volatility (Black and Scholes 1973),

Local volatility (Dupire 1994, Derman and Kani 1994),

Stochastic volatility (Hull and White 1987, Heston 1993,
Hagan et al. 2002,...).

However, it has been recently shown that models where the
volatility is driven by a fractional Brownian motion (and not a
classical Brownian motion) enable us to reproduce very well the
behavior of historical data and of the volatility surface.
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Fractional Brownian motion (I)

Definition

The fractional Brownian motion (fBm) with Hurst parameter H is
the only process WH to satisfy :

Self-similarity : (WH
at )

L
= aH(WH

t ).

Stationary increments : (WH
t+h −WH

t )
L
= (WH

h ).

Gaussian process with E[WH
1 ] = 0 and E[(WH

1 )2] = 1.
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Fractional Brownian motion (II)

Proposition

For all ε > 0, WH is (H − ε)-Hölder a.s.

Proposition

The absolute moments of the increments of the fBm satisfy

E[|WH
t+h −WH

t |q] = Kqh
Hq.

Proposition

If H > 1/2, the fBm exhibits long memory in the sense that

Cov[WH
t+1 −WH

t ,W
H
1 ] ∼ C

t2−2H
.
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Fractional models

FSV model

Some models have been built using fractional Brownian motion
with Hurst parameter H > 1/2 to reproduce the supposed long
memory property of the volatility :

Comte and Renault 1998 (FSV model) :

d log(σt) = νdWH
t + α(m − log(σt))dt.

Here α is large to model a mean reversion effect.

El Euch, Rosenbaum Microstructural foundations of rough volatility 7



Volatility is rough
Microstructural foundations
Rough volatility in practice

Fractional models

RFSV model

However, statistical investigation of recent prices and options data
rather suggests the use of rough versions of the preceding model,
for example :

d log(σt) = νdWH
t + α(m − log(σt))dt,

with H of order 0.1 and α very small (Rough FSV model).
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Example

Volatility of the S&P

Everyday, we estimate the volatility of the S&P at 11am
(say), over 3500 days.

We study the quantity

m(∆, q) = E[| log(σt+∆)− log(σt)|q],

for various q and ∆, the smallest ∆ being one day.

In the RFSV model m(∆, q) ∼ c∆qH .
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The log-volatility

Figure : The log volatility log(σt) as a function of t, S&P.
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Example : Scaling of the moments

Figure : log(m(q,∆)) = ζq log(∆) + Cq. The scaling is not only valid
as ∆ tends to zero, but holds on a wide range of time scales.
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Example : Monofractality of the log-volatility

Figure : Empirical ζq and q → Hq with H = 0.14 (similar to a fBm
with Hurst parameter H).
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Properties of RFSV-type models

Statistical analysis of the RFSV model

Reproduces very well (almost) all the statistical stylized facts
of volatility, with explicit formulas.

Very good fit of the volatility surface, in particular of the
ATM skew.

No power law long memory property.

Applied to the RFSV model, statistical tests for long memory
behave the same way as for real data and deduce, probably
wrongly, the presence of long memory in the volatility.

Explicit prediction formulas for the future volatility, depending
only on the parameter H, outperforming classical predictors.
To forecast the volatility at time t + ∆, one needs to consider
the data in the past until t −∆.
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Multiscaling in finance

An important property of volatility time series is their
multiscaling behavior, see Mantegna and Stanley 2000 and
Bouchaud and Potters 2003.

This means one observes essentially the same law whatever
the time scale.

In particular, there are periods of high and low market activity
at different time scales.

Very few models reproduce this property, see multifractal
models.
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Figure : Empirical volatility over 10, 3 and 1 years.
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Our model on different time intervals

Figure : Simulated volatility over 10, 3 and 1 years. We observe the
same alternations of periods of high market activity with periods of low
market activity.
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Apparent multiscaling in our model

Let LH,ν be the law on [0, 1] of the process eνW
H
t .

Then the law of the volatility process on [0,T ] renormalized

on [0, 1] : σtT/σ0 is LH,νT
H

.

If one observes the volatility on T = 10 years (2500 days)
instead of T = 1 day, the parameter νTH defining the law of
the volatility is only multiplied by 2500H ∼ 3.

Therefore, one observes quite the same properties on a very
wide range of time scales.

The roughness of the volatility process (H = 0.14) implies a
multiscaling behavior of the volatility.
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Leverage effect and rough volatility

Leverage effect

The leverage effect is a well studied phenomenon : negative
correlation between price increments and volatility increments.

Very easy to incorporate within a rough volatility framework :
Use Mandelbrot-van Ness representation of the fractional
Brownian motion :

WH
t =

∫ t

0

dWs

(t − s)
1
2
−H

+

∫ 0

−∞

( 1

(t − s)
1
2
−H
− 1

(−s)
1
2
−H

)
dWs ,

and correlate W with the Brownian motion driving the price.

El Euch, Rosenbaum Microstructural foundations of rough volatility 18



Volatility is rough
Microstructural foundations
Rough volatility in practice

Table of contents

1 Volatility is rough

2 Microstructural foundations

3 Rough volatility in practice

El Euch, Rosenbaum Microstructural foundations of rough volatility 19



Volatility is rough
Microstructural foundations
Rough volatility in practice

Building the model

Necessary conditions for a good microscopic price model

We want :

A tick-by-tick model.

A model reproducing the stylized facts of modern electronic
markets in the context of high frequency trading.

A model helping us to understand the rough dynamics of the
volatility from the high frequency behaviour of market
participants.

A model helping us to understand leverage effect.
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Building the model

Stylized facts 1-2

Markets are highly endogenous, meaning that most of the
orders have no real economic motivations but are rather sent
by algorithms in reaction to other orders, see Bouchaud et al.,
Filimonov and Sornette.

Mechanisms preventing statistical arbitrages take place on
high frequency markets, meaning that at the high frequency
scale, building strategies that are on average profitable is
hardly possible.
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Building the model

Stylized facts 3-4

There is some asymmetry in the liquidity on the bid and ask
sides of the order book. In particular, a market maker is likely
to raise the price by less following a buy order than to lower
the price following the same size sell order, see Brennan et al.,
Brunnermeier and Pedersen, Hendershott and Seasholes.

A large proportion of transactions is due to large orders, called
metaorders, which are not executed at once but split in time.
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Building the model

Hawkes processes

Our tick-by-tick price model is based on Hawkes processes in
dimension two, very much inspired by the approaches in Bacry
et al. and Jaisson and R.

A two-dimensional Hawkes process is a bivariate point process
(N+

t ,N
−
t )t≥0 taking values in (R+)2 and with intensity

(λ+
t , λ

−
t ) of the form :(

λ+
t

λ−t

)
=

(
µ+

µ−

)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
dN+

s

dN−s

)
.
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Building the model

The microscopic price model

Our model is simply given by

Pt = N+
t − N−t .

N+
t corresponds to the number of upward jumps of the asset

in the time interval [0, t] and N−t to the number of downward
jumps. Hence, the instantaneous probability to get an upward
(downward) jump depends on the location in time of the past
upward and downward jumps.

By construction, the price process lives on a discrete grid.

Statistical properties of this model have been studied in
details.
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Encoding the stylized facts

The right parametrization of the model

Recall that(
λ+
t

λ−t

)
=

(
µ+

µ−

)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
dN+

s

dN−s

)
.

High degree of endogeneity of the market→ L1 norm of the
largest eigenvalue of the kernel matrix close to one.

No arbitrage→ ϕ1 + ϕ3 = ϕ2 + ϕ4.

Liquidity asymmetry→ ϕ3 = βϕ2, with β > 1.

Metaorders splitting→ ϕ1(x), ϕ2(x) ∼
x→∞

K/x1+α, α ≈ 0.6.
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About the degree of endogeneity of the market

L1 norm close to unity

For simplicity, let us consider the case of a Hawkes process in
dimension 1 with Poisson rate µ and kernel φ :

λt = µ+

∫
(0,t)

φ(t − s)dNs .

Nt then represents the number of transactions between time 0
and time t.

L1 norm of the largest eigenvalue close to unity→L1 norm of
φ close to unity. This is systematically observed in practice,
see Hardiman, Bercot and Bouchaud ; Filimonov and Sornette.

The parameter ‖φ‖1 corresponds to the so-called degree of
endogeneity of the market.
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About the degree of endogeneity of the market

Population interpretation of Hawkes processes

Under the assumption ‖φ‖1 < 1, Hawkes processes can be
represented as a population process where migrants arrive
according to a Poisson process with parameter µ.

Then each migrant gives birth to children according to a non
homogeneous Poisson process with intensity function φ, these
children also giving birth to children according to the same
non homogeneous Poisson process, see Hawkes (74).

Now consider for example the classical case of buy (or sell)
market orders. Then migrants can be seen as exogenous
orders whereas children are viewed as orders triggered by other
orders.
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About the degree of endogeneity of the market

Degree of endogeneity of the market

The parameter ‖φ‖1 corresponds to the average number of
children of an individual, ‖φ‖2

1 to the average number of
grandchildren of an individual,. . . Therefore, if we call cluster
the descendants of a migrant, then the average size of a
cluster is given by

∑
k≥1 ‖φ‖k1 = ‖φ‖1/(1− ‖φ‖1).

Thus, the average proportion of endogenously triggered events
is ‖φ‖1/(1− ‖φ‖1) divided by 1 + ‖φ‖1/(1− ‖φ‖1), which is
equal to ‖φ‖1.
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The scaling limit of the price model

Limit theorem

After suitable scaling in time and space, the long term limit of our
price model satisfies the following Rough Heston dynamics :

Pt =

∫ t

0

√
VsdWs −

1

2

∫ t

0
Vsds,

Vt = V0 +
1

Γ(α)

∫ t

0
(t−s)α−1λ(θ−Vs)ds+

λν

Γ(α)

∫ t

0
(t−s)α−1

√
VsdBs ,

with

d〈W ,B〉t =
1− β√

2(1 + β2)
dt.
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The scaling limit of the price model

Comments on the theorem

The Hurst parameter H = α− 1/2.

Hence stylized facts of modern market microstructure
naturally give rise to fractional dynamics and leverage effect.

One of the only cases of scaling limit of a non ad hoc “micro
model” where leverage effect appears in the limit. Compare
with Nelson’s limit of GARCH models for example.
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Using rough volatility models

Pricing and hedging with rough volatility

Non Markovian, non semi-martingale volatility process→
standard approaches cannot be applied.

Monte-Carlo methods are hard to use.

No hope for explicit formulas, except in one particular case :
Rough Heston model.

Approximations are needed→ Josselin’s talk.
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Rough Heston model

Rough version of Heston model

We consider the following model :

dSt = St
√
VtdWt ,

Vt = V0 +
1

Γ(α)

∫ t

0
(t−s)α−1λ(θ−Vs)ds+

λν

Γ(α)

∫ t

0
(t−s)α−1

√
VsdBs ,

with
d〈W ,B〉t = ρdt.
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Computing the characteristic functions

From microstructure to option prices

Deriving characteristic functions for our microscopic
Hawkes-based price model and passing to the limit, we are
able to compute characteristic functions in the Rough Heston
model.
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Characteristic functions

We write :

I 1−αf (x) =
1

Γ(1− α)

∫ x

0

f (t)

(x − t)α
dt, Dαf (x) =

d

dx
I 1−αf (x).

Theorem

The characteristic function at time t for the Rough Heston model
is given by

L(a, t) = exp
(∫ t

0
g(a, s)ds +

V0

θλ
I 1−αg(a, t)

)
,

with g(a, ) the unique solution of the fractional Riccati equation :

Dαg(a, s) =
λθ

2
(−a2 − ia) + λ(iaρν − 1)g(a, s) +

λν2

2θ
g2(a, s).
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